

Inhaltsverzeichnis

Abkurzungsverzeichnis	4
Sekundarstufen I	5
Pflichtmodule	5
MAT-LS-D3 - Ausgewählte Themen der Mathematikdidaktik	5
113749 S - Didaktik der Algebra	5
113750 S - Didaktik der Linearen Algebra und Analytischen Geometrie	5
113751 S - Kompetenzen & Motivation fördern mit Escape Rooms	5
113752 S - Differenzierung im Mathematikunterricht	5
113753 S - Mathematik bauen	5
113754 S - Stellenwertverständnis in Curricula und Schulbüchern im internationalen Vergleich	5
MAT-LS-D4 - Forschung in der Mathematikdidaktik	6
113755 S - Sprachbildender Mathematikunterricht in Forschung und Praxis	6
113767 S - Schulbuchgestaltung in Forschung und Praxis	6
Wahlpflichtmodule	6
MAT-LS-8 - Höhere Mathematik für das Lehramt	6
114213 S - Seminar Geometrie	6
MAT-LS-WP1 - Vertiefung Algebra, Diskrete Mathematik, Geometrie	6
113702 VU - Differentialgeometrie I	6
114025 VU - Aperiodische Ordnung	7
MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik	8
114025 VU - Aperiodische Ordnung	9
MAT-LS-WP3 - Vertiefung Wahrscheinlichkeitstheorie und Statistik	10
113874 VU - Advanced Statistical Data Analysis	10
MAT-LS-WP4 - Vertiefung Angewandte Mathematik und Numerik	10
114050 VS - Angewandte Mathematik	10
Sekundarstufen II	10
Pflichtmodule	10
MAT-LS-8 - Höhere Mathematik für das Lehramt	10
114213 S - Seminar Geometrie	10
MAT-LS-D3 - Ausgewählte Themen der Mathematikdidaktik	10
113749 S - Didaktik der Algebra	10
113750 S - Didaktik der Linearen Algebra und Analytischen Geometrie	11
113751 S - Kompetenzen & Motivation fördern mit Escape Rooms	11
113752 S - Differenzierung im Mathematikunterricht	11
113753 S - Mathematik bauen	11
113754 S - Stellenwertverständnis in Curricula und Schulbüchern im internationalen Vergleich	11
MAT-LS-D4 - Forschung in der Mathematikdidaktik	11
113755 S - Sprachbildender Mathematikunterricht in Forschung und Praxis	11
113767 S - Schulbuchgestaltung in Forschung und Praxis	12
Wahlpflichtmodule	12

MAT-LS-WP1 - Vertiefung Algebra, Diskrete Mathematik, Geometrie	12
113702 VU - Differentialgeometrie I	12
114025 VU - Aperiodische Ordnung	13
MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik	14
114025 VU - Aperiodische Ordnung	14
MAT-LS-WP3 - Vertiefung Wahrscheinlichkeitstheorie und Statistik	15
113874 VU - Advanced Statistical Data Analysis	16
MAT-LS-WP4 - Vertiefung Angewandte Mathematik und Numerik	16
114050 VS - Angewandte Mathematik	16
Glossar	17

Abkürzungsverzeichnis

Veranstaltungsarten

AG Arbeitsgruppe
B Blockveranstaltung
BL Blockseminar
DF diverse Formen
EX Exkursion

FP Forschungspraktikum
FS Forschungsseminar
FU Fortgeschrittenenübung

GK Grundkurs
HS Hauptseminar
KL Kolloquium
KU Kurs
LK Lektürekurs

LP Lehrforschungsprojekt

OS Oberseminar
P Projektseminar
PJ Projekt
PR Praktikum
PS Proseminar

PU Praktische Übung
RE Repetitorium
RV Ringvorlesung
S Seminar

S1 Seminar/PraktikumS2 Seminar/ProjektS3 Schulpraktische Studien

S4 Schulpraktische Übungen
SK Seminar/Kolloquium
SU Seminar/Übung
TU Tutorium

U Übung
UN Unterricht
UP Praktikum/Übung
UT Übung / Tutorium
V Vorlesung
V5 Vorlesung/Projekt

VP Vorlesung/Praktikum
VS Vorlesung/Seminar
VU Vorlesung/Übung

W Werkstatt WS Workshop

Veranstaltungsrhytmen

wöch. wöchentlich 14t. 14-täglich Einzel Einzeltermin Block Block

BlockSa Block (inkl. Sa)

BlockSaSo Block (inkl. Sa,So)

Andere

L

N.N. Noch keine Angaben

n.V. Nach Vereinbarung

LP Leistungspunkte

SWS Semesterwochenstunden

→ Belegung über PULS

PL Prüfungsleistung

PNL Prüfungsnebenleistung

SL Studienleistung

sonstige Leistungserfassung

Vorlesungsverzeichnis

Sekundarstufen I

Pflichtmodule

MAT-LS-D3 - Ausgewählte Themen der Mathematikdidaktik									
√√ 113749 S - Didaktik der Algebra									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	S	Mi	10:15 - 11:45	wöch.	2.05.0.04	09.04.2025	Andres Jurk		
Leistungen	in Bezug	auf das	Modul						
PNL 510481	- Semina	ır zu ausç	ewählten Themen	der Mathema	tikdidaktik (unbenotet)				
PNL 510482	- Semina	ır zu ausg	ewählten Themen	der Mathema	tikdidaktik (unbenotet)				

√ 113750 S - Didaktik der Linearen Algebra und Analytischen Geometrie									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	S	Fr	12:15 - 13:45	wöch.	2.05.1.06	11.04.2025	Prof. Dr. Sebastian Geisler		
Leistungen	in Bezug	auf das	Modul						
PNL 510481	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)								
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)								

√ 113751 S - Kompetenzen & Motivation fördern mit Escape Rooms										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Do	14:15 - 15:45	wöch.	2.24.0.29	10.04.2025	Prof. Dr. Sebastian Geisler			
Leistungen	in Bezug	auf das	Modul							
PNL 510481	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									

1/-	√ 113752 S - Differenzierung im Mathematikunterricht									
Grup	рре	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1		S	Do	12:15 - 13:45	wöch.	2.24.0.06	10.04.2025	Prof. Dr. Birte Friedrich		
Leis	tungen	in Bezug	auf das	Modul						
PNL	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									
PNL	510482	- Semina	r zu ausg	ewählten Themen	der Mathema	tikdidaktik (unbenotet)				

√ 113753	√ 113753 S - Mathematik bauen									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	N.N.	09:00 - 16:30	Block	2.09.0.12	10.06.2025	Prof. Dr. Ulrich Kortenkamp			
Leistungen	in Bezug	auf das	Modul							
PNL 510481	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									

√ 113754	√ 113754 S - Stellenwertverständnis in Curricula und Schulbüchern im internationalen Vergleich									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Мо	12:15 - 13:45	wöch.	2.24.0.29	07.04.2025	Prof. Dr. Ulrich Kortenkamp			

Leistungen in Bezug auf das Modul

PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)

PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)

MAT-LS-D4 - Forschung in der Mathematikdidaktik

√ 113755 S - Sprachbildender Mathematikunterricht in Forschung und Praxis										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Мо	10:00 - 12:00	wöch.	2.09.0.12	07.04.2025	Dr. Claudia-Susanne Günther, Melina Fabian			
1	S	Мо	12:00 - 14:00	wöch.	2.09.0.12	07.04.2025	Melina Fabian, Dr. Claudia-Susanne Günther			

Lerninhalte

Die Idee des Seminars ist es, am Beispiel des praxisrelevanten Forschungsfeldes *Sprachbildung im Mathematikunterricht* einen Einblick in mathematikdidaktische Forschungsprozesse zu gewinnen. Die Studierenden erhalten die Gelegenheit, eigene Forschungsinteressen zu spezifizieren und auf Basis zuvor erarbeiteter Theorieinhalte ein konkretes Studiendesign zu entwickeln. Die Auseinandersetzung mit verschiedenen mathematikdidaktischen Forschungszugängen sowie Hospitationen in der Schulpraxis sollen dabei helfen, die eigene Erhebung zu planen.

Leistungen in Bezug auf das Modul

PNL 510493 - Vertiefende Seminare zu Themen der Mathematikdidaktik (unbenotet)

√ 113767 S - Schulbuchgestaltung in Forschung und Praxis										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Mi	10:00 - 14:00	wöch.	2.09.0.12	09.04.2025	Dr. Heiko Etzold			
Bemerkung	Bemerkung									

In dieser Lehrveranstaltung durchleben Sie den Prozess der Schulbucherstellung für den Matheamtikunterricht samt wissenschaftlicher Begleitung. Basierend auf wissenschaftlichen Erkenntnissen und selbst durchgeführten kleinen Studien werden zunächst Kriterien an gute Mathematikschulbücher herausgearbeitet. Anschließend werden diese exemplarisch an einem Lerngegenstand in die Erstellung eines Schulbuchkapitels überführt. Über die Erprobung an Schulen werden in mehreren Entwicklungszyklen sowohl die Designprinzipien ausgeschärft als auch das Schulbuchkapitel überarbeitet.

Leistungen in Bezug auf das Modul

PNL 510493 - Vertiefende Seminare zu Themen der Mathematikdidaktik (unbenotet)

Wahlpflichtmodule

MAT-LS-8 - Höhere Mathematik für das Lehramt

√ 114213	↓ 114213 S - Seminar Geometrie									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Do	14:00 - 16:00	wöch.	2.09.1.10	10.04.2025	Prof. Dr. Christian Bär			
	Raum 2.09.1.22									

Leistungen in Bezug auf das Modul

PNL 510562 - Fachseminar zu ausgewählten Themen der höheren Mathematik (unbenotet)

MAT-LS-WP1 - Vertiefung Algebra, Diskrete Mathematik, Geometrie

√ 113702 VU - Differentialgeometrie I									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	V	Мо	10:00 - 12:00	wöch.	N.N.	07.04.2025	Dr. rer. nat. Christoph Stephan		
	Raum 2.09.1.22								

1	V	Di	14:00 - 16:00	wöch.	2.09.0.14	08.04.2025	Dr. rer. nat. Christoph Stephan
1	U	Mi	12:00 - 14:00	wöch.	2.09.1.10	09.04.2025	Dr. Florian Hanisch

Bitte schreiben Sie sich im Moodle-Kurs ein. Please subscribe to the Moodle course.

Link zum Moodle-Kurs

Voraussetzung

Lineara Algebra 1+2, Analysis 1+2 (3+4 von Vorteil)

Lerninhalte

In der Vorlesung Differentialgeometrie lernen wir grundlegende Begriffe der Geometrie gekrümmter Räume kennen. Wir definieren die Messung von Längen und Winkeln mit Hilfe von semi-riemannschen Metriken. Wir führen eine kovariante Ableitung für Vektorfelder ein und studieren lokal kürzeste Verbindungen zwischen zwei Punkten, sogenannte Geodätische. Anschließend behandeln wir verschiedene Krümmungsbegriffe. Diese Vorlesung ist nützlich für Studierende, die die mathematischen Grundlagen der Allgemeinen Relativitätstheorie verstehen wollen.

Leistungen in Bezug auf das Modul

PNL 518924 - Vorlesung mit Übung im Bereich Algebra, Diskrete Mathematik, Geometrie (unbenotet)

√ 114025 VU - Aperiodische Ordnung										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	V	Мо	10:00 - 12:00	wöch.	2.09.0.13	07.04.2025	Dr. rer. nat. Siegfried Beckus			
1	V	Do	12:00 - 14:00	wöch.	N.N.	10.04.2025	Dr. rer. nat. Siegfried Beckus			
	Raum 2.09.1.22									
1	U	Do	14:00 - 16:00	wöch.	2.09.0.13	10.04.2025	Dr. rer. nat. Siegfried Beckus			

Beschreibung (see English version below)

Die Welt der "Aperiodischen Ordnung" ist ein vielseitiges Gebiet, welches verschiedene Bereiche der Mathematik und Physik berührt, wie dynamische Systeme, Geometrie, Spektraltheorie, Operatortheorie sowie die Festkörperphysik.

1982 hat Dan Shechtman durch ein sogenanntes Diffraktionsexperiment eine neue Klasse von Festkörpern entdeckt, sogenannte Quasikristalle. Das Diffraktionsspektrum zeigte scharfe Punkte, was für einen geordneten Festkörper (nicht zufällig verteilte Atome bzw. Moleküle) spricht. Andererseits stellte sich heraus, dass die Symmetrien in dem Diffraktionsmuster inkompatibel mit einem periodisch geordneten Körper sind, sogenannte Kristalle. Für diese Entdeckung hat Dan Shechtman 2011 den Nobelpreis in Chemie erhalten. Die mathematische Beschreibung solcher Systeme erfolgt durch gefärbte Punktmengen (sogenannte Delonemengen) bzw. Kachellungen (durch endlich viele Polytope) des zugrundeliegenden Raumes, wie den d-dimensionalen Euklidischen Raum. Eins der bekanntesten Kachellungen ist die sogenannte Penrose-Paketierung. Eine mathematische Definition für Quasikristalle gibt es nicht und die verschiedenen Klassen dieser Systeme werden unter dem Begriff der aperiodischen Ordnung zusammengefasst.

Assoziierte Schrödingeroperatoren zu diesen geometrischen und kombinatorischen Objekten beschreiben das Verhalten eines Teilchens, wie eines Elektrons, innerhalb eines solchen Festkörpers. Hier haben sich in einer Dimension sehr interessante Phänomene gezeigt, wie Cantorspektrum vom Lebesguemaß Null. Das bekannteste Beispiel in einer Dimension ist hierbei die sogenannte Fibonaccifolge.

Im Rahmen der Veranstaltung soll ein Einblick in die reichhaltige Theorie dieser aperiodischen Systeme gegeben werden, wobei wir uns auf die dynamischen bzw. geometrischen Eigenschaften einschränken. Insbesondere werden wir eindimensionale Systeme analysieren, sogenannte Sturmschen dynamischen Systeme, zu denen zum Beispiel die Fibonaccifolge gehört. Hierfür spielt insbesondere die Kettenbruchzerlegung irrationaler Zahlen eine wesentliche Rolle.

Im Rahmen der Veranstaltung nutzen wir verschiedene Quellen auf Englisch und Deutsch.

Description

The mathematical world of "Aperiodic Order" is a diverse field touching various different disciplines in mathematics and physics such as dynamical systems, geometry, spectral theory, operator theory and solid state physics.

In 1982, Dan Shechtman discovered a new class of solids, called quasicrystals, through a diffraction experiment. On the one hand, the corresponding diffraction spectrum had sharp peaks, indicating some order in the material (of the atoms and molecules). On the other hand, the symmetry group of the diffraction spectrum turned out to be incompatible that the underlying solid is periodic, a so-called crystal. For this discovery, Dan Shechtman was awarded the Nobel prize in Chemistry in 2011. These systems are modelled mathematical through colored point sets (called Delone sets) respectively tiling in an ambient space, like the d-dimensional real space. One of the famous examples is the so-called Penrose tiling. A precise mathematical definition of a quasicrystal does not exist and these various models of them are collected under the terminology of aperiodic order.

The associated Schrödinger operators of these objects describe the long-time behavior of a particle inside such a solid. In one-dimensions, various interesting and surprising phenomena where discovered such as Cantor spectrum of Lebesgue measure zero. One of the most studied example in this area is the so-called Fibonacci sequence.

Within the frame of this course, we will get a first insight in this rich theory of aperiodic order, where we will mainly focus on dynamical and geometric properties. In particular, we will analyze one-dimensional systems such as Sturmian dynamical systems including the example of the Fibonacci sequence. For this, the so-called continued fraction expansion will play a crucial role.

This course is based on various textbooks and references in German and English.

Bemerkung

 $\hbox{Alle weiteren Informationen finden Sie im} \ \ \underline{\hbox{Moodlekurs}} \ . \ \hbox{Bitte schreiben Sie sich selbstständig ein}.$

Leistungen in Bezug auf das Modul

PNL 518924 - Vorlesung mit Übung im Bereich Algebra, Diskrete Mathematik, Geometrie (unbenotet)

MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik

√ 114025 VU - Aperiodische Ordnung										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	V	Мо	10:00 - 12:00	wöch.	2.09.0.13	07.04.2025	Dr. rer. nat. Siegfried Beckus			
1	V	Do	12:00 - 14:00	wöch.	N.N.	10.04.2025	Dr. rer. nat. Siegfried Beckus			
	Raum 2.09.1.22									
1	U	Do	14:00 - 16:00	wöch.	2.09.0.13	10.04.2025	Dr. rer. nat. Siegfried Beckus			

Beschreibung (see English version below)

Die Welt der "Aperiodischen Ordnung" ist ein vielseitiges Gebiet, welches verschiedene Bereiche der Mathematik und Physik berührt, wie dynamische Systeme, Geometrie, Spektraltheorie, Operatortheorie sowie die Festkörperphysik.

1982 hat Dan Shechtman durch ein sogenanntes Diffraktionsexperiment eine neue Klasse von Festkörpern entdeckt, sogenannte Quasikristalle. Das Diffraktionsspektrum zeigte scharfe Punkte, was für einen geordneten Festkörper (nicht zufällig verteilte Atome bzw. Moleküle) spricht. Andererseits stellte sich heraus, dass die Symmetrien in dem Diffraktionsmuster inkompatibel mit einem periodisch geordneten Körper sind, sogenannte Kristalle. Für diese Entdeckung hat Dan Shechtman 2011 den Nobelpreis in Chemie erhalten. Die mathematische Beschreibung solcher Systeme erfolgt durch gefärbte Punktmengen (sogenannte Delonemengen) bzw. Kachellungen (durch endlich viele Polytope) des zugrundeliegenden Raumes, wie den d-dimensionalen Euklidischen Raum. Eins der bekanntesten Kachellungen ist die sogenannte Penrose-Paketierung. Eine mathematische Definition für Quasikristalle gibt es nicht und die verschiedenen Klassen dieser Systeme werden unter dem Begriff der aperiodischen Ordnung zusammengefasst.

Assoziierte Schrödingeroperatoren zu diesen geometrischen und kombinatorischen Objekten beschreiben das Verhalten eines Teilchens, wie eines Elektrons, innerhalb eines solchen Festkörpers. Hier haben sich in einer Dimension sehr interessante Phänomene gezeigt, wie Cantorspektrum vom Lebesguemaß Null. Das bekannteste Beispiel in einer Dimension ist hierbei die sogenannte Fibonaccifolge.

Im Rahmen der Veranstaltung soll ein Einblick in die reichhaltige Theorie dieser aperiodischen Systeme gegeben werden, wobei wir uns auf die dynamischen bzw. geometrischen Eigenschaften einschränken. Insbesondere werden wir eindimensionale Systeme analysieren, sogenannte Sturmschen dynamischen Systeme, zu denen zum Beispiel die Fibonaccifolge gehört. Hierfür spielt insbesondere die Kettenbruchzerlegung irrationaler Zahlen eine wesentliche Rolle.

Im Rahmen der Veranstaltung nutzen wir verschiedene Quellen auf Englisch und Deutsch.

Description

The mathematical world of "Aperiodic Order" is a diverse field touching various different disciplines in mathematics and physics such as dynamical systems, geometry, spectral theory, operator theory and solid state physics.

In 1982, Dan Shechtman discovered a new class of solids, called quasicrystals, through a diffraction experiment. On the one hand, the corresponding diffraction spectrum had sharp peaks, indicating some order in the material (of the atoms and molecules). On the other hand, the symmetry group of the diffraction spectrum turned out to be incompatible that the underlying solid is periodic, a so-called crystal. For this discovery, Dan Shechtman was awarded the Nobel prize in Chemistry in 2011. These systems are modelled mathematical through colored point sets (called Delone sets) respectively tiling in an ambient space, like the d-dimensional real space. One of the famous examples is the so-called Penrose tiling. A precise mathematical definition of a quasicrystal does not exist and these various models of them are collected under the terminology of aperiodic order.

The associated Schrödinger operators of these objects describe the long-time behavior of a particle inside such a solid. In one-dimensions, various interesting and surprising phenomena where discovered such as Cantor spectrum of Lebesgue measure zero. One of the most studied example in this area is the so-called Fibonacci sequence.

Within the frame of this course, we will get a first insight in this rich theory of aperiodic order, where we will mainly focus on dynamical and geometric properties. In particular, we will analyze one-dimensional systems such as Sturmian dynamical systems including the example of the Fibonacci sequence. For this, the so-called continued fraction expansion will play a crucial role

This course is based on various textbooks and references in German and English.

Bemerkung

Alle weiteren Informationen finden Sie im Moodlekurs . Bitte schreiben Sie sich selbstständig ein.

Leistungen in Bezug auf das Modul

PNL 519024 - Vorlesung mit Übung im Bereich Analysis und Mathematische Physik (unbenotet)

MAT-LS-WP3 - Vertiefung Wahrscheinlichkeitstheorie und Statistik

√ 113874 VU - Advanced Statistical Data Analysis											
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft				
1	V	Мо	12:00 - 14:00	wöch.	N.N.	07.04.2025	Prof. Dr. Alexandra Carpentier				
	room 2.	09.0.17									
1	V	Di	12:00 - 14:00	wöch.	2.09.0.12	08.04.2025	Prof. Dr. Alexandra Carpentier				
1	U	Do	08:00 - 10:00	wöch.	N.N.	10.04.2025	Dr. Bernhard Stankewitz				
	room 2.	room 2.09.0.17									

Leistungen in Bezug auf das Modul

PNL 519124 - Vorlesung mit Übung im Bereich Wahrscheinlichkeitstheorie und Statistik (unbenotet)

MAT-LS-WP4 - Vertiefung Angewandte Mathematik und Numerik

√ 114050	114050 VS - Angewandte Mathematik									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	V	Mi	10:00 - 12:00	wöch.	2.09.0.14	09.04.2025	Dr. rer. nat. Bernhard Fiedler			
1	V	Fr	08:00 - 10:00	wöch.	N.N.	11.04.2025	Dr. rer. nat. Bernhard Fiedler			
	Raum 2	.09.1.22								
1	S	Fr	10:00 - 12:00	wöch.	2.09.0.14	11.04.2025	Dr. rer. nat. Bernhard Fiedler			
Leistungen in Bezug auf das Modul										

Leistungen in Bezug auf das Modul

PNL 519223 - Vorlesung mit Seminar im Bereich Angewandte Mathematik und Numerik (unbenotet)

Sekundarstufen II

Pflichtmodule

MAT-LS-8 - Höhere Mathematik für das Lehramt

√ 114213 S - Seminar Geometrie										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Do	14:00 - 16:00	wöch.	2.09.1.10	10.04.2025	Prof. Dr. Christian Bär			
	Raum 2.09.1.22									

Leistungen in Bezug auf das Modul

PNL 510562 - Fachseminar zu ausgewählten Themen der höheren Mathematik (unbenotet)

MAT-LS-D3 - Ausgewählte Themen der Mathematikdidaktik

√ 113749 S - Didaktik der Algebra									
Gruppe	Gruppe Art Tag Zeit Rhythmus Veranstaltungsort 1.Termin Lehrkraft								
1	S	Mi	10:15 - 11:45	wöch.	2.05.0.04	09.04.2025	Andres Jurk		

Leistungen in Bezug auf das Modul

PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)

PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)

<i>√</i> 113	√ 113750 S - Didaktik der Linearen Algebra und Analytischen Geometrie										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft				
1	S	Fr	12:15 - 13:45	wöch.	2.05.1.06	11.04.2025	Prof. Dr. Sebastian Geisler				
Leistun	gen in Bezu	g auf das	Modul								
PNL 510	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										
PNL 510	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										

1/~	113751 S - Kompetenzen & Motivation fördern mit Escape Rooms										
Gru	ірре	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1		S	Do	14:15 - 15:45	wöch.	2.24.0.29	10.04.2025	Prof. Dr. Sebastian Geisler			
Leis	stungen	in Bezug	auf das	Modul							
PNL	NL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										
PNL	510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										

√ 113752 S - Differenzierung im Mathematikunterricht										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Do	12:15 - 13:45	wöch.	2.24.0.06	10.04.2025	Prof. Dr. Birte Friedrich			
Leistungen	in Bezug	auf das	Modul							
PNL 510481	PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									

√ 113753	113753 S - Mathematik bauen										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft				
1	S	N.N.	09:00 - 16:30	Block	2.09.0.12	10.06.2025	Prof. Dr. Ulrich Kortenkamp				
Leistungen	in Bezug	auf das	Modul								
PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)											
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										

√ 113754 S - Stellenwertverständnis in Curricula und Schulbüchern im internationalen Vergleich										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	S	Мо	12:15 - 13:45	wöch.	2.24.0.29	07.04.2025	Prof. Dr. Ulrich Kortenkamp			
Leistungen	in Bezug	auf das	Modul							
PNL 510481 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)										
PNL 510482	PNL 510482 - Seminar zu ausgewählten Themen der Mathematikdidaktik (unbenotet)									

MAT-LS-D4 - Forschung in der Mathematikdidaktik 113755 S - Sprachbildender Mathematikunterricht in Forschung und Praxis Gruppe Rhythmus Veranstaltungsort Art Tag Zeit 1.Termin Lehrkraft S 10:00 - 12:00 2.09.0.12 Dr. Claudia-Susanne Мо wöch. 07.04.2025 Günther, Melina Fabian S Мо 12:00 - 14:00 wöch. 2.09.0.12 07.04.2025 Melina Fabian, Dr. Claudia-Susanne Günther

Lerninhalte

Die Idee des Seminars ist es, am Beispiel des praxisrelevanten Forschungsfeldes *Sprachbildung im Mathematikunterricht* einen Einblick in mathematikdidaktische Forschungsprozesse zu gewinnen. Die Studierenden erhalten die Gelegenheit, eigene Forschungsinteressen zu spezifizieren und auf Basis zuvor erarbeiteter Theorieinhalte ein konkretes Studiendesign zu entwickeln. Die Auseinandersetzung mit verschiedenen mathematikdidaktischen Forschungszugängen sowie Hospitationen in der Schulpraxis sollen dabei helfen, die eigene Erhebung zu planen.

Leistungen in Bezug auf das Modul

PNL 510493 - Vertiefende Seminare zu Themen der Mathematikdidaktik (unbenotet)

√ 113767 S - Schulbuchgestaltung in Forschung und Praxis									
Gruppe Art Tag Zeit Rhythmus Veranstaltungsort 1.Termin Lehrkraft						Lehrkraft			
1	S	Mi	10:00 - 14:00	wöch.	2.09.0.12	09.04.2025	Dr. Heiko Etzold		

Bemerkung

In dieser Lehrveranstaltung durchleben Sie den Prozess der Schulbucherstellung für den Matheamtikunterricht samt wissenschaftlicher Begleitung. Basierend auf wissenschaftlichen Erkenntnissen und selbst durchgeführten kleinen Studien werden zunächst Kriterien an gute Mathematikschulbücher herausgearbeitet. Anschließend werden diese exemplarisch an einem Lerngegenstand in die Erstellung eines Schulbuchkapitels überführt. Über die Erprobung an Schulen werden in mehreren Entwicklungszyklen sowohl die Designprinzipien ausgeschärft als auch das Schulbuchkapitel überarbeitet.

Leistungen in Bezug auf das Modul

PNL 510493 - Vertiefende Seminare zu Themen der Mathematikdidaktik (unbenotet)

Wahlpflichtmodule

MAT-LS-WP1 - Vertiefung Algebra, Diskrete Mathematik, Geometrie

113702 VU - Differentialgeometrie I									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	V	Мо	10:00 - 12:00	wöch.	N.N.	07.04.2025	Dr. rer. nat. Christoph Stephan		
	Raum 2.09.1.22								
1	V	Di	14:00 - 16:00	wöch.	2.09.0.14	08.04.2025	Dr. rer. nat. Christoph Stephan		
1	U	Mi	12:00 - 14:00	wöch.	2.09.1.10	09.04.2025	Dr. Florian Hanisch		

Kommentar

Bitte schreiben Sie sich im Moodle-Kurs ein. Please subscribe to the Moodle course.

Link zum Moodle-Kurs

Voraussetzung

Lineara Algebra 1+2, Analysis 1+2 (3+4 von Vorteil)

Lerninhalte

In der Vorlesung Differentialgeometrie lernen wir grundlegende Begriffe der Geometrie gekrümmter Räume kennen. Wir definieren die Messung von Längen und Winkeln mit Hilfe von semi-riemannschen Metriken. Wir führen eine kovariante Ableitung für Vektorfelder ein und studieren lokal kürzeste Verbindungen zwischen zwei Punkten, sogenannte Geodätische. Anschließend behandeln wir verschiedene Krümmungsbegriffe. Diese Vorlesung ist nützlich für Studierende, die die mathematischen Grundlagen der Allgemeinen Relativitätstheorie verstehen wollen.

Leistungen in Bezug auf das Modul

PNL 518924 - Vorlesung mit Übung im Bereich Algebra, Diskrete Mathematik, Geometrie (unbenotet)

√ 114025 VU - Aperiodische Ordnung									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	V	Мо	10:00 - 12:00	wöch.	2.09.0.13	07.04.2025	Dr. rer. nat. Siegfried Beckus		
1	V	Do	12:00 - 14:00	wöch.	N.N.	10.04.2025	Dr. rer. nat. Siegfried Beckus		
	Raum 2.09.1.22								
1	U	Do	14:00 - 16:00	wöch.	2.09.0.13	10.04.2025	Dr. rer. nat. Siegfried Beckus		

Beschreibung (see English version below)

Die Welt der "Aperiodischen Ordnung" ist ein vielseitiges Gebiet, welches verschiedene Bereiche der Mathematik und Physik berührt, wie dynamische Systeme, Geometrie, Spektraltheorie, Operatortheorie sowie die Festkörperphysik.

1982 hat Dan Shechtman durch ein sogenanntes Diffraktionsexperiment eine neue Klasse von Festkörpern entdeckt, sogenannte Quasikristalle. Das Diffraktionsspektrum zeigte scharfe Punkte, was für einen geordneten Festkörper (nicht zufällig verteilte Atome bzw. Moleküle) spricht. Andererseits stellte sich heraus, dass die Symmetrien in dem Diffraktionsmuster inkompatibel mit einem periodisch geordneten Körper sind, sogenannte Kristalle. Für diese Entdeckung hat Dan Shechtman 2011 den Nobelpreis in Chemie erhalten. Die mathematische Beschreibung solcher Systeme erfolgt durch gefärbte Punktmengen (sogenannte Delonemengen) bzw. Kachellungen (durch endlich viele Polytope) des zugrundeliegenden Raumes, wie den d-dimensionalen Euklidischen Raum. Eins der bekanntesten Kachellungen ist die sogenannte Penrose-Paketierung. Eine mathematische Definition für Quasikristalle gibt es nicht und die verschiedenen Klassen dieser Systeme werden unter dem Begriff der aperiodischen Ordnung zusammengefasst.

Assoziierte Schrödingeroperatoren zu diesen geometrischen und kombinatorischen Objekten beschreiben das Verhalten eines Teilchens, wie eines Elektrons, innerhalb eines solchen Festkörpers. Hier haben sich in einer Dimension sehr interessante Phänomene gezeigt, wie Cantorspektrum vom Lebesguemaß Null. Das bekannteste Beispiel in einer Dimension ist hierbei die sogenannte Fibonaccifolge.

Im Rahmen der Veranstaltung soll ein Einblick in die reichhaltige Theorie dieser aperiodischen Systeme gegeben werden, wobei wir uns auf die dynamischen bzw. geometrischen Eigenschaften einschränken. Insbesondere werden wir eindimensionale Systeme analysieren, sogenannte Sturmschen dynamischen Systeme, zu denen zum Beispiel die Fibonaccifolge gehört. Hierfür spielt insbesondere die Kettenbruchzerlegung irrationaler Zahlen eine wesentliche Rolle.

Im Rahmen der Veranstaltung nutzen wir verschiedene Quellen auf Englisch und Deutsch.

Description

The mathematical world of "Aperiodic Order" is a diverse field touching various different disciplines in mathematics and physics such as dynamical systems, geometry, spectral theory, operator theory and solid state physics.

In 1982, Dan Shechtman discovered a new class of solids, called quasicrystals, through a diffraction experiment. On the one hand, the corresponding diffraction spectrum had sharp peaks, indicating some order in the material (of the atoms and molecules). On the other hand, the symmetry group of the diffraction spectrum turned out to be incompatible that the underlying solid is periodic, a so-called crystal. For this discovery, Dan Shechtman was awarded the Nobel prize in Chemistry in 2011. These systems are modelled mathematical through colored point sets (called Delone sets) respectively tiling in an ambient space, like the d-dimensional real space. One of the famous examples is the so-called Penrose tiling. A precise mathematical definition of a quasicrystal does not exist and these various models of them are collected under the terminology of aperiodic order.

The associated Schrödinger operators of these objects describe the long-time behavior of a particle inside such a solid. In one-dimensions, various interesting and surprising phenomena where discovered such as Cantor spectrum of Lebesgue measure zero. One of the most studied example in this area is the so-called Fibonacci sequence.

Within the frame of this course, we will get a first insight in this rich theory of aperiodic order, where we will mainly focus on dynamical and geometric properties. In particular, we will analyze one-dimensional systems such as Sturmian dynamical systems including the example of the Fibonacci sequence. For this, the so-called continued fraction expansion will play a crucial role

This course is based on various textbooks and references in German and English.

Bemerkung

 $\hbox{Alle weiteren Informationen finden Sie im} \ \ \underline{\hbox{Moodlekurs}} \ . \ \hbox{Bitte schreiben Sie sich selbstständig ein}.$

Leistungen in Bezug auf das Modul

PNL 518924 - Vorlesung mit Übung im Bereich Algebra, Diskrete Mathematik, Geometrie (unbenotet)

MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik

√ 114025 VU - Aperiodische Ordnung									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	V	Мо	10:00 - 12:00	wöch.	2.09.0.13	07.04.2025	Dr. rer. nat. Siegfried Beckus		
1	V	Do	12:00 - 14:00	wöch.	N.N.	10.04.2025	Dr. rer. nat. Siegfried Beckus		
	Raum 2.09.1.22								
1	U	Do	14:00 - 16:00	wöch.	2.09.0.13	10.04.2025	Dr. rer. nat. Siegfried Beckus		

Beschreibung (see English version below)

Die Welt der "Aperiodischen Ordnung" ist ein vielseitiges Gebiet, welches verschiedene Bereiche der Mathematik und Physik berührt, wie dynamische Systeme, Geometrie, Spektraltheorie, Operatortheorie sowie die Festkörperphysik.

1982 hat Dan Shechtman durch ein sogenanntes Diffraktionsexperiment eine neue Klasse von Festkörpern entdeckt, sogenannte Quasikristalle. Das Diffraktionsspektrum zeigte scharfe Punkte, was für einen geordneten Festkörper (nicht zufällig verteilte Atome bzw. Moleküle) spricht. Andererseits stellte sich heraus, dass die Symmetrien in dem Diffraktionsmuster inkompatibel mit einem periodisch geordneten Körper sind, sogenannte Kristalle. Für diese Entdeckung hat Dan Shechtman 2011 den Nobelpreis in Chemie erhalten. Die mathematische Beschreibung solcher Systeme erfolgt durch gefärbte Punktmengen (sogenannte Delonemengen) bzw. Kachellungen (durch endlich viele Polytope) des zugrundeliegenden Raumes, wie den d-dimensionalen Euklidischen Raum. Eins der bekanntesten Kachellungen ist die sogenannte Penrose-Paketierung. Eine mathematische Definition für Quasikristalle gibt es nicht und die verschiedenen Klassen dieser Systeme werden unter dem Begriff der aperiodischen Ordnung zusammengefasst.

Assoziierte Schrödingeroperatoren zu diesen geometrischen und kombinatorischen Objekten beschreiben das Verhalten eines Teilchens, wie eines Elektrons, innerhalb eines solchen Festkörpers. Hier haben sich in einer Dimension sehr interessante Phänomene gezeigt, wie Cantorspektrum vom Lebesguemaß Null. Das bekannteste Beispiel in einer Dimension ist hierbei die sogenannte Fibonaccifolge.

Im Rahmen der Veranstaltung soll ein Einblick in die reichhaltige Theorie dieser aperiodischen Systeme gegeben werden, wobei wir uns auf die dynamischen bzw. geometrischen Eigenschaften einschränken. Insbesondere werden wir eindimensionale Systeme analysieren, sogenannte Sturmschen dynamischen Systeme, zu denen zum Beispiel die Fibonaccifolge gehört. Hierfür spielt insbesondere die Kettenbruchzerlegung irrationaler Zahlen eine wesentliche Rolle.

Im Rahmen der Veranstaltung nutzen wir verschiedene Quellen auf Englisch und Deutsch.

Description

The mathematical world of "Aperiodic Order" is a diverse field touching various different disciplines in mathematics and physics such as dynamical systems, geometry, spectral theory, operator theory and solid state physics.

In 1982, Dan Shechtman discovered a new class of solids, called quasicrystals, through a diffraction experiment. On the one hand, the corresponding diffraction spectrum had sharp peaks, indicating some order in the material (of the atoms and molecules). On the other hand, the symmetry group of the diffraction spectrum turned out to be incompatible that the underlying solid is periodic, a so-called crystal. For this discovery, Dan Shechtman was awarded the Nobel prize in Chemistry in 2011. These systems are modelled mathematical through colored point sets (called Delone sets) respectively tiling in an ambient space, like the d-dimensional real space. One of the famous examples is the so-called Penrose tiling. A precise mathematical definition of a quasicrystal does not exist and these various models of them are collected under the terminology of aperiodic order.

The associated Schrödinger operators of these objects describe the long-time behavior of a particle inside such a solid. In one-dimensions, various interesting and surprising phenomena where discovered such as Cantor spectrum of Lebesgue measure zero. One of the most studied example in this area is the so-called Fibonacci sequence.

Within the frame of this course, we will get a first insight in this rich theory of aperiodic order, where we will mainly focus on dynamical and geometric properties. In particular, we will analyze one-dimensional systems such as Sturmian dynamical systems including the example of the Fibonacci sequence. For this, the so-called continued fraction expansion will play a

This course is based on various textbooks and references in German and English.

Bemerkung

 $\hbox{Alle weiteren Informationen finden Sie im} \ \ \underline{\hbox{Moodlekurs}} \ . \ \hbox{Bitte schreiben Sie sich selbstständig ein}.$

Leistungen in Bezug auf das Modul

PNL 519024 - Vorlesung mit Übung im Bereich Analysis und Mathematische Physik (unbenotet)

MAT-LS-WP3 - Vertiefung Wahrscheinlichkeitstheorie und Statistik

√ 113874 VU - Advanced Statistical Data Analysis									
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft		
1	V	Мо	12:00 - 14:00	wöch.	N.N.	07.04.2025	Prof. Dr. Alexandra Carpentier		
	room 2.09.0.17								
1	V	Di	12:00 - 14:00	wöch.	2.09.0.12	08.04.2025	Prof. Dr. Alexandra Carpentier		
1	U	Do	08:00 - 10:00	wöch.	N.N.	10.04.2025	Dr. Bernhard Stankewitz		
	room 2.09.0.17								
Leistungen in Bezug auf das Modul									
PNL 519124	- Vorlesu	ıng mit Üb	oung im Bereich W	ahrscheinlichl	keitstheorie und Statisti	k (unbenotet)			

MAT-LS-WP4 - Vertiefund	a Anaowandto	Mathamatik und	Mumorik
INIAI-LO-WE4 - VEILICIUII	y Angewanute	: Maniciliank ullu	Nulliclik

√/ 114050 VS - Angewandte Mathematik										
Gruppe	Art	Tag	Zeit	Rhythmus	Veranstaltungsort	1.Termin	Lehrkraft			
1	V	Mi	10:00 - 12:00	wöch.	2.09.0.14	09.04.2025	Dr. rer. nat. Bernhard Fiedler			
1	V	Fr	08:00 - 10:00	wöch.	N.N.	11.04.2025	Dr. rer. nat. Bernhard Fiedler			
	Raum 2.09.1.22									
1	S	Fr	10:00 - 12:00	wöch.	2.09.0.14	11.04.2025	Dr. rer. nat. Bernhard Fiedler			
Leistungen in Bezug auf das Modul										

PNL 519223 - Vorlesung mit Seminar im Bereich Angewandte Mathematik und Numerik (unbenotet)

Glossar

Die folgenden Begriffserklärungen zu Prüfungsleistung, Prüfungsnebenleistung und Studienleistung gelten im Bezug auf Lehrveranstaltungen für alle Ordnungen, die seit dem WiSe 2013/14 in Kranft getreten sind.

Prüfungsleistung

Prüfungsleistungen sind benotete Leistungen innerhalb eines Moduls. Aus der Benotung der Prüfungsleistung(en) bildet sich die Modulnote, die in die Gesamtnote des Studiengangs eingeht. Handelt es sich um eine unbenotete Prüfungsleistung, so muss dieses ausdrücklich ("unbenotet") in der Modulbeschreibung der fachspezifischen Ordnung geregelt sein. Weitere Informationen, auch zu den Anmeldemöglichkeiten von Prüfungsleistungen, finden Sie unter anderem in der Kommentierung der BaMa-O

Prüfungsnebenleistung

Prüfungsnebenleistungen sind für den Abschluss eines Moduls relevante Leistungen, die – soweit sie vorgesehen sind – in der Modulbeschreibung der fachspezifischen Ordnung beschrieben sind. Prüfungsnebenleistungen sind immer unbenotet und werden lediglich mit "bestanden" bzw. "nicht bestanden" bewertet. Die Modulbeschreibung regelt, ob die Prüfungsnebenleistung eine Teilnahmevoraussetzung für eine Modulprüfung oder eine Abschlussvoraussetzung für ein ganzes Modul ist. Als Teilnahmevoraussetzung für eine Modulprüfung muss die Prüfungsnebenleistung erfolgreich vor der Anmeldung bzw. Teilnahme an der Modulprüfung erbracht worden sein. Auch für Erbringung einer Prüfungsnebenleistungen wird eine Anmeldung vorausgesetzt. Diese fällt immer mit der Belegung der Lehrveranstaltung zusammen, da Prüfungsnebenleistung im Rahmen einer Lehrveranstaltungen absolviert werden. Sieht also Ihre fachspezifische Ordnung Prüfungsnebenleistungen bei Lehrveranstaltungen vor, sind diese Lehrveranstaltungen zwingend zu belegen, um die Prüfungsnebenleistung absolvieren zu können.

Studienleistung

Als Studienleistung werden Leistungen bezeichnet, die weder Prüfungsleistungen noch Prüfungsnebenleistungen sind.

Impressum

Herausgeber

Am Neuen Palais 10 14469 Potsdam

Telefon: +49 331/977-0 Fax: +49 331/972163

E-mail: presse@uni-potsdam.de Internet: www.uni-potsdam.de

Umsatzsteueridentifikationsnummer

DE138408327

Layout und Gestaltung

jung-design.net

Druck

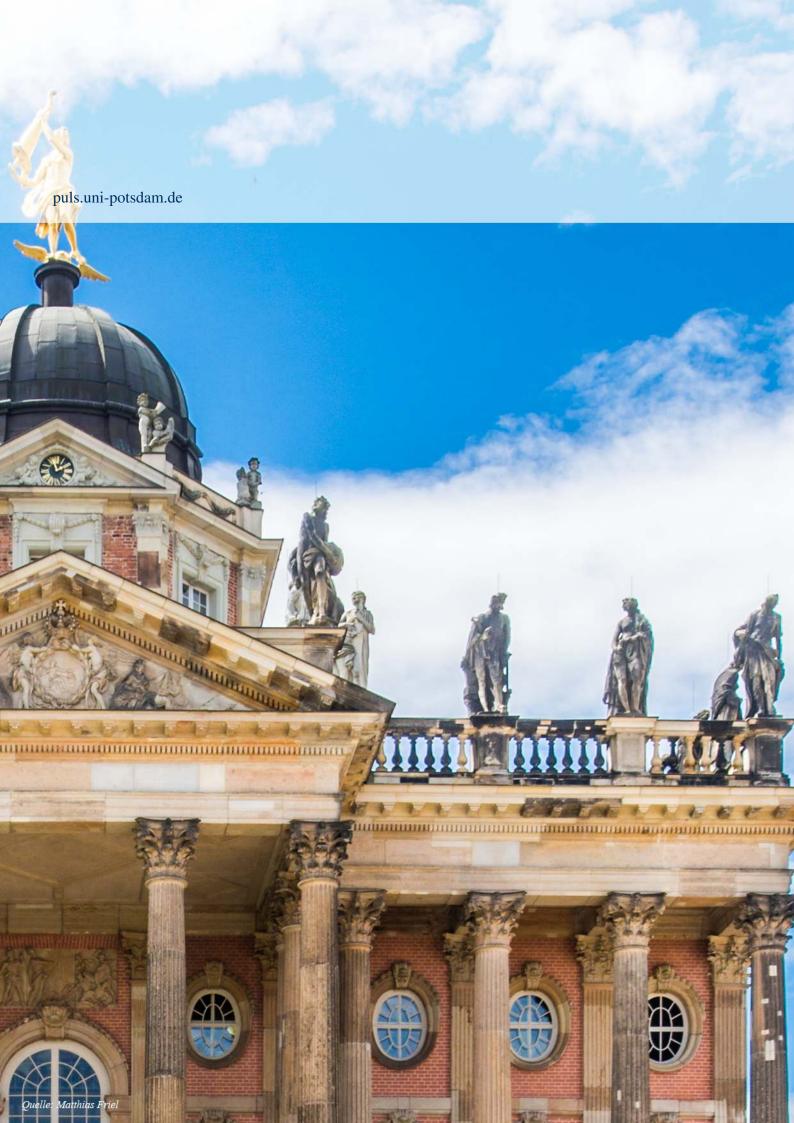
11.3.2025

Rechtsform und gesetzliche Vertretung

Die Universität Potsdam ist eine Körperschaft des Öffentlichen Rechts. Sie wird gesetzlich vertreten durch Prof. Oliver Günther, Ph.D., Präsident der Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam.

Zuständige Aufsichtsbehörde

Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg Dortustr. 36 14467 Potsdam


Inhaltliche Verantwortlichkeit i. S. v. § 5 TMG und § 55 Abs. 2 RStV

Referat für Presse- und Öffentlichkeitsarbeit Referatsleiterin und Sprecherin der Universität Silke Engel Am Neuen Palais 10 14469 Potsdam

Telefon: +49 331/977-1474 Fax: +49 331/977-1130

E-mail: presse@uni-potsdam.de

Die einzelnen Fakultäten, Institute und Einrichtungen der Universität Potsdam sind für die Inhalte und Informationen ihrer Lehrveranstaltungen zuständig.

