Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 

Foto: Matthias Friel

Modul: Data Preparation - Techniken und Werkzeuge (Data Engineering)


Das hier aufgeführte Modul basiert auf in den Amtlichen Bekanntmachungen der Universität Potsdam veröffentlichten Studien- und Prüfungsordnungen.
Verbindliche Regelungswirkung haben nur die veröffentlichten Ordnungen.


HPI-PREP-T: Data Preparation - Techniken und Werkzeuge (Data Engineering) Anzahl der Leistungspunkte (LP):
6 LP
Modulart (Pflicht- oder Wahlpflichtmodul): Abhängig vom Studiengang (siehe unten)
Inhalte und Qualifikationsziele des Moduls:

Inhalt

Dieses Modul behandelt Techniken und Werkzeuge zur Erschließung inhomogener Datenquellen für datengetriebene Systeme. Insbesondere werden dabei Techniken und Werkzeuge beispielsweise auf ihre Fähigkeiten, anwendungsspezifische Nutzbarkeit und Praktikabilität untersucht. Im Zuge dessen sollen z.B. auch konkrete Implementierungen wichtiger Technologien zur Bearbeitung von Problemen der Data Preparation wie etwa Data Profiling, Data Cleansing, Data Integration und Data Transformation besprochen werden.

 

Qualifikationsziele

Die Studierenden erwerben detailliertes Wissen über die im Modul gegenständlichen Fachthemen.

Die Studierenden

  • erlernen die Erschließung und Integration inhomogener Datenquellen,
  • können Technologien wie beispielsweise Data Integration und Data Transformation anwenden,
  • können zu einer vorgegebenen Problemstellung geeignete Lösungskonzepte und -strategien auswählen und anwenden,
  • erweitern ihre fachliche Urteilskompetenz,
  • sind in der Lage zur Lösung von Problemen selbständig geeignete Informationsquellen zu erschließen und einzusetzen,
  • können Strategien zur Vorverarbeitung für verschiedene Anforderungen implementieren,
  • erlangen einen Überblick über die verfügbaren Techniken und Werkzeuge und lernen diese zu bewerten,
  • erwerben fachsprachliche Kenntnisse in Englisch,
  • erweitern ihre Lernfähigkeiten.
Modul(teil)prüfungen (Anzahl, Form, Umfang, Arbeitsaufwand in LP):

Eine Prüfung der folgende Formen:

Hausarbeit, mind. 8 Seiten zusammen mit der Präsentation von Forschungsergebnissen (Vortrag, 30-45 Min.)

Klausur, 90-120 Min.

Mündliche Prüfung, 30-45 Min.

Selbstlernzeit (in Zeitstunden (h)): 120

Veranstaltungen
(Lehrformen)
Kontaktzeit
(in SWS)
Prüfungsnebenleistungen
(Anzahl, Form, Umfang)
Lehrveranstaltungsbegleitende Modul(teil)prüfung
(Anzahl, Form, Umfang)
Für den Abschluss des Moduls Für die Zulassung zur Modulprüfung
Vorlesung/Seminar (Vorlesung oder Seminar) 4 - - -

Häufigkeit des Angebots:

WiSe und SoSe

Voraussetzung für die Teilnahme am Modul: keine
Anbietende Lehreinheit: Digital Engineering
Zuordnung zu Studiengängen Modulart
Master of Science Data Engineering WiSe 2018/19 Wahlpflichtmodul