Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 

Foto: Matthias Friel

Advanced Probability Theory - Einzelansicht

  • Funktionen:
  • Zur Zeit keine Belegung möglich
Veranstaltungsart Vorlesung/Übung Veranstaltungsnummer
SWS 6 Semester WiSe 2022/23
Einrichtung Institut für Mathematik   Sprache englisch
Belegungsfristen 04.10.2022 - 10.11.2022   
04.10.2022 - 10.11.2022   
Gruppe 1:
     Zur Zeit keine Belegung möglich
    Tag Zeit Rhythmus Dauer Raum Lehrperson fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
Vorlesung Mo 10:15 bis 11:45 wöchentlich 17.10.2022 bis 06.02.2023  2.09.0.14 Prof. Dr. Roelly 19.12.2022: Akademische Weihnachtsferien
26.12.2022: 2. Weihnachtstag
Einzeltermine anzeigen
Übung Mi 12:15 bis 13:45 wöchentlich 19.10.2022 bis 08.02.2023  2.05.1.06 Dr. Keller 21.12.2022: Akademische Weihnachtsferien
28.12.2022: Akademische Weihnachtsferien
Einzeltermine anzeigen
Vorlesung Fr 12:15 bis 13:45 wöchentlich 21.10.2022 bis 10.02.2023  N.N. Prof. Dr. Roelly 23.12.2022: Akademische Weihnachtsferien
30.12.2022: Akademische Weihnachtsferien
  Bemerkung: Raum 1.22 (Haus)
Kommentar

 The students are weekly invited to

1-  read and prepare first alone at home some precise topics (indicated on the Moodle page)

2- participate to the two lessons during which Prof. Sylvie Roelly present the topics, prove the theorems and comments them

3- solve an Exercise sheet, and participate to a meeting with Dr. Peter Keller where the solutions are discussed.

 

-----------

Precise data (literature, timetable etc) are given on the corresponding Moodle web-page

https://moodle2.uni-potsdam.de/course/view.php?id=25305 

 

Literatur

The main reference is

Durrett, R. : Probability: theory and examples.

Cambridge Series in Statistical and Probabilistic Mathematics 2010

Bemerkung

Every one is advised to read the general informations written on the moodle plattform "Introductory to Master in Mathematics".

Voraussetzungen

The participant is assumed to have a reasonable grasp of 
probability theory, analysis, functional analysis and measure theory.

Leistungsnachweis

Written or oral exam

Lerninhalte

The purpose of this course is to treat in detail selected fundamentals of modern probability theory. The focus is in particular on limit theorems including the strong law of large numbers, Lindeberg's central limit theorem and Poisson convergence. We will also introduce and study discrete-time martingales. Various examples will be considered.

The participant is assumed to have a reasonable grasp of basic probability, analysis 1-4, and measure theory.

This lecture is appropriate for Master students or for advanced Bachelor students. It is a natural extension of the course "Stochastik" and an application of the course "Functional Analysis I".

It is part of both profiles "Mathematical modeling and data analysis" and "Structures of Mathematics with physical background" in the course of studies Master of Science Mathematics.

 

Zielgruppe

This lecture is appropriate for Master students in Mathematics and for advanced Bachelor students in Mathematics.

It also adresses to students of Data Science, Informatics and Physics. 


Strukturbaum
Die Veranstaltung wurde 15 mal im Vorlesungsverzeichnis WiSe 2022/23 gefunden:
Vorlesungsverzeichnis
Wirtschafts- und Sozialwissenschaftliche Fakultät
Wirtschaftswissenschaften
Master of Science
Wirtschaftsinformatik und Digitale Transformation (Prüfungsversion ab WiSe 2017/18)
Wahlpflichtmodule
Interdisziplinäre Studien
MATVMD831 - Advanced Topics in Probability Theory and Statistics I  - - - 1 offens Buch
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Mathematik
Master of Science
Mathematics (Prüfungsversion ab WiSe 2019/20)
Elective Modules
Analysis and Mathematical Physics
MATVMD821 - Advanced Topics in Analysis and Mathematical Physics I  - - - 2 offens Buch
MATVMD822 - Advanced Topics in Analysis and Mathematical Physics II  - - - 3 offens Buch
Theory of Probability and Statistics
MATVMD831 - Advanced Topics in Probability Theory and Statistics I  - - - 4 offens Buch
MATVMD832 - Advanced Topics in Probability Theory and Statistics II  - - - 5 offens Buch
Mathematik (Prüfungsversion ab WiSe 2015/16)
Wahlpflichtmodule
Bereich Analysis und Mathematische Physik
MATVMD821 - Advanced Topics in Analysis and Mathematical Physics I  - - - 6 offens Buch
MATVMD822 - Advanced Topics in Analysis and Mathematical Physics II  - - - 7 offens Buch
Bereich Wahrscheinlichkeitstheorie und Statistik
MATVMD831 - Advanced Topics in Probability Theory and Statistics I  - - - 8 offens Buch
MATVMD832 - Advanced Topics in Probability Theory and Statistics II  - - - 9 offens Buch
Master of Education
Mathematik (Prüfungsversion ab WiSe 2022/23)
Sekundarstufe I
Wahlpflichtmodule
MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik  - - - 10 offens Buch
Sekundarstufe II
Wahlpflichtmodule
MAT-LS-WP2 - Vertiefung Analysis und Mathematische Physik  - - - 11 offens Buch
Mathematik (Prüfungsversion ab WiSe 2013/14)
Wahlpflichtmodule
MATVMD721 - Vertiefungsmodul Analysis und Mathematische Physik  - - - 12 offens Buch
Bachelor of Science
Mathematik (Prüfungsversion ab WiSe 2015/2016)
Wahlpflichtmodule
MAT-VM-D631 - Vertiefungsmodul Wahrscheinlichkeitstheorie und Statistik I  - - - 13 offens Buch
MAT-VM-D632 - Vertiefungsmodul Wahrscheinlichkeitstheorie und Statistik II  - - - 14 offens Buch
Institut für Informatik und Computational Science
Master of Science
Data Science (Prüfungsversion ab WiSe 2018/19)
Elective Modules - Advanced Module
MAT-DSAM8A - Mathematical Foundations of Data Science A  - - - 15 offens Buch