Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 

Foto: Matthias Friel

Differential Geometry II - Spectral Geometry - Einzelansicht

Veranstaltungsart Vorlesung/Übung Veranstaltungsnummer 17034
SWS 6 Semester SoSe 2020
Einrichtung Institut für Mathematik   Sprache englisch
Belegungsfristen 20.04.2020 - 10.05.2020

Belegung über PULS
20.04.2020 - 10.05.2020

Belegung über PULS
Gruppe 1:
     jetzt belegen / abmelden
    Tag Zeit Rhythmus Dauer Raum Lehrperson Ausfall-/Ausweichtermine Max. Teilnehmer/-innen
Einzeltermine anzeigen
Vorlesung Mo 14:15 bis 15:45 wöchentlich 13.04.2020 bis 20.07.2020  2.09.1.10 Dr. Seyed Hosseini  
Einzeltermine anzeigen
Übung Di 12:15 bis 13:45 wöchentlich 14.04.2020 bis 21.07.2020  2.09.0.14 Longhi  
Einzeltermine anzeigen
Vorlesung Do 10:15 bis 11:45 wöchentlich 16.04.2020 bis 23.07.2020  2.09.0.14 Dr. Seyed Hosseini  
Kommentar

Can you recognise a musician only from listening to her play an instrument? In general, the answer is probably no. Nonetheless, we might be able to learn enough from her pieces to narrow down the possibilities. One of the main aims of Spectral Geometry is to "answer" a mathematical version of the latter question: is it possible to determine (or recover) the Riemannian metric on a manifold by the spectrum of the Laplace operator associated to it. In this analogy the musician becomes a Riemannian metric and the role of the musical instrument is played by the manifold. A Riemannian metric on a manifold allows us to measure the length of and angle between tangent vectors and can be used to make sense of lengths of curves on an abstract manifold. It also gives rise in natural way to an operator to an unbounded operator (the Laplace operator) on a Hilbert space. A milder version of our question is then: to what extent does the spectrum of the Laplace operator determine the Riemannian metric. 

Our course will start with a quick review of multilinear algebra, followed by an introduction to the theory smooth manifolds. We then delve into Riemannian geometry and discuss some concepts arising from a Riemannian metric such as different notions of curvature. The Laplace operator associated to Riemannian metric is then introduced and some basic properties of its spectrum on compact manifolds are discussed. After the computation of the spectrum in some simple cases, we will discuss how the spectrum is related to the different kinds of curvature previously introduced. We will also look at some negative answers to the above question; i.e., discuss examples of essentially different Riemannian manifolds whose Laplace operators have identical spectrum. Further concepts will be decided upon by availability of time and the interests of the participants. 

Prerequisites for this course are a solid knowledge of linear algebra and single and multivariable analysis as taught in the first two semesters of the bachelor degree in mathematics. Basic knowledge of some concepts from functional analysis such as linear operators on Hilbert spaces, and measure theory are also recommended.


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester SoSe 2020 , Aktuelles Semester: SoSe 2024